If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y+20=0
a = 1; b = 14; c = +20;
Δ = b2-4ac
Δ = 142-4·1·20
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{29}}{2*1}=\frac{-14-2\sqrt{29}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{29}}{2*1}=\frac{-14+2\sqrt{29}}{2} $
| -5=9+(c/4) | | 17x-9x=8 | | 2(3+x)=13-3x | | x/3-5/2=-3/2 | | 16/28=4n | | 31-5x=20+6x | | (x+2)+2x+1)=90 | | 3n+3=2(n+7) | | 32-(x-3)=x/5 | | (x/6)+(x+5)=11/30 | | 6x^+1=487 | | 3x+15=32x-20 | | (x/6)+(x+5)=(11/30) | | 10x-26+26+2x=33-17+5x | | m-13/5-5m-13/6=4 | | 6x-2=14-3 | | 14w+16w-6+5=-5+5-6 | | 2k+2+3k=5(k-2) | | 2n-10+7=1n+8 | | x-5(4x-7)=-8 | | (3x/2)-5=4 | | (x+2)+(4+5x)=180 | | 3(x-6)+8x=-7 | | 2(5x+1)−(3x−7)=11 | | 3x-18+8x=-7 | | x/6=45/3-2x/3 | | f(-2)=-(-2)^2+3(-2)-11 | | 0.07m=0.56 | | 2(n+5)+7=1n+8 | | 25+2(4)-13x2=31 | | (-4y)-y=-3 | | x/3+x/5=5/6 |